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Generative Al & Diffusion Models

e Diffusion models are the state of the art in generating image, videos, audio, 3-d scenes
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2015 Sohl-Dickstein et al. (physics paper) e Application to science
2019 Yang & Ermon; 2020, Ho et al, 2021 Song et al...

2021 Dall-E generation & sampling

Lagranglan turbulence (Li, Biferale et al 2024)
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Time-reversal and generative Al for images

Equilibration
dz; _ Ok it
dt - (9562 "

Generative diffusion models go back in time
(denoising from white noise)

Forward in time

%__x.Jr (1)
a T

Backward in time




Recap on Langevin Equation
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Fokker-Planck Equation & Equilibration
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Formation on main classes/features of the data from pure noise

Extensions of the theory

e (GMs on low dimensional manifolds and
latent spaces (Achilli et al. 2025, George et al 2025)

e StatMech Models: Curie-Weiss and 1D Ising
(GB and Mezard 2023, Achilli to appear; Guth and Bruna to appear)

e Hierarchical Models
(Sclocchi et 2024, Pavasovic et al 2025)

1
e General large-t expansion: ts = 5 log A (GBetal 2024)

A Largest principal component of the correlation matrix
of the data

GB, Bonnaire, De Bortoli, Mézard Nature Commun. 2024




Model

Tests in Real Images Training
Similar model of Ho et al 2020
U-Net, 4 resolution maps Adam optimizer
with 2 convolutional blocks LR 107
Dropout rate 0.1 Multiplied by 0.98 every 50 epochs
25.7 millions parameters
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Speciation Transition in Real Images

Numerical experiments Probability 2 clones
Symmetry is broken Symmetry is preserved L
- in the same class
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n;;g;nem Analytical result for
simple models
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Confirm the speciation phenomenon & good estimation of the speciation time

Observed numerically in U-turns experiments

Behjoo et al 2023
Kadkhodale et al 2023
Schlocchi et al 2024

Dynamical regimes relevant for applications -> conditional diffusion & classifier free guidance
(Kynkaanniemi et al 2024 (NVIDIA), Pavasovic et al 2025)




Why Diffusion Models Don't Memorize?

Memorization-Generalization Transition



Memorisation vs Generalisation

Relevant for theory and practice
(copyright problems and differential privacy)
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Generalisation for large enough training sets

Bonnaire, et al Nat. Comm. 2024

See also Kadkhodale, Guth, Simoncelli, Mallat 2023: experiment with two models on two training sets

(generation of new images and independence on the training set)



Memorisation vs Generalisation

N=1

N=100 N=1000 N=10000 N=100000

Closest image from S :

Generated by models trained on S;:

Generated by models trained on Ss:

- D

Closest image from S:

Kadkhodale, Guth, Simoncelli, Mallat 2023

Generalisation for large enough training sets
(generation of new images and independence on the training set)



Memorization vs Generalization
for a “perfect machine”
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Curse of dimensionality
(Exponential number of data to decrease the memorization phase )
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(Mapping to disordered systems)

A perfect and perfectly trained machine would
lead to memorization
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How Diffusion Models Avoid Memorization in Practice?

e Generalisation due to architectural regularization
e Kamb, Ganguli 2024; Kadkhodale et al. 2023 -> convolutional architecture

e George, Veiga, Macris 2025: "Denoising Score Matching with Random Features: Insights on Diffusion Models
from Precise Learning Curves” -> Analytical study on Random Feature Score Models

e Generalisation due to dynamical regularisation

e Wu, Marion, Biau, Boyer 2025: “Taking a big step: Large learning rates in denoising score matching
prevent memorization.” - > learning rate

e LiLi, Zhang, Bian 2025: “On the generalisation properties of diffusion models” -> early stopping

Bonnaire, Urfin, GB, Mézard 2025
See also Favero,Schlocchi, Wyart 2025
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A Recap (or Crash Course) in Renormalization Group

One of the most important conceptual framework in physics -> theory of phase
transitions, high-energy physics, multi scale phenomena
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Heating

e RG: Hierarchical coarse grain of the probability distribution from small to large
scale. From small scale properties to large scale physics.

e After more than 50 years of works on RG, it turns out that there is a new
dynamical formulation of RG and that is strongly connected to diffusion models!

Bauerschmidt, Bodineau, Dagallier 2023 (and before); Clothler, Rezchikov 2023; Masuki, Ashida 2025



Renormalisation group in a nutshell

T'=0.997 1,

RG for
the Ising Model
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Coarse-grained field Small scale fluctuations
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Renormalisation group in a nutshell

e Integrate out the “fast” (or local) degrees of freedom and rescale

e RG leads to a flow in energy functions (or probability distributions)

BJy

e Second order phase transition associated
to non-trivial fixed points

3J,  modell model 2
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Renormalisation group in a nutshell

e Obtaining the RG flow is a crucial for many physical systems -> major problem
in physics

 Many methods to implement RG approximatively (Kadanoff real-space,
Wilson-Fisher Fourier space, Operator expansions,...)

e Exact and non-perturbative RG by Polchinskv (and later Wetterich



