Generative AI and Diffusion Models a Statistical Physics Perspective

Giulio Biroli
ENS Paris

Generative AI & Diffusion Models

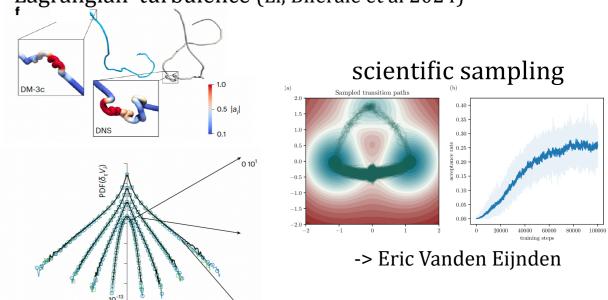
• Diffusion models are the state of the art in generating image, videos, audio, 3-d scenes

Images Audios Videos

2015 Sohl-Dickstein et al. (physics paper) 2019 Yang & Ermon; 2020, Ho et al, 2021 Song et al... 2021 Dall-E,...

 Application to science generation & sampling

Lagrangian turbulence (Li, Biferale et al 2024)



Time-reversal and generative AI for images

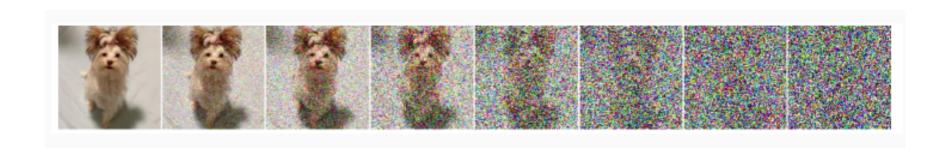
Equilibration

$$\frac{dx_i}{dt} = -\frac{\partial E}{\partial x_i} + \eta_i(t)$$

Generative diffusion models go back in time (denoising from white noise)

Forward in time

$$\frac{dx_i}{dt} = -x_i + \eta_i(t)$$



Backward in time

Recap on Langevin Equation

$$\frac{dx_i}{dt} = -\frac{\partial E}{\partial x_i} + \eta_i(t) \qquad \langle \eta_i(t)\eta_j(t') \rangle = 2T\delta_{i,j}\delta(t - t') \qquad x \in \mathbb{R}^d$$
In math notation
$$dx_i = -\frac{\partial E}{\partial x_i}dt + \sqrt{2T}dB_t^i \qquad \mathbb{E}[\cdot] = \langle \cdot \rangle$$

Fokker-Planck Equation & Equilibration

$$\frac{\partial}{\partial t}P(x,t) = \sum_{i} \frac{\partial}{\partial x_{i}} \left[\frac{\partial E}{\partial x_{i}} + T \frac{\partial}{\partial x_{i}} \right] P(x,t) \qquad P(x,t) \to P_{GB}(x) = \frac{e^{-E/T}}{Z_{T}}$$

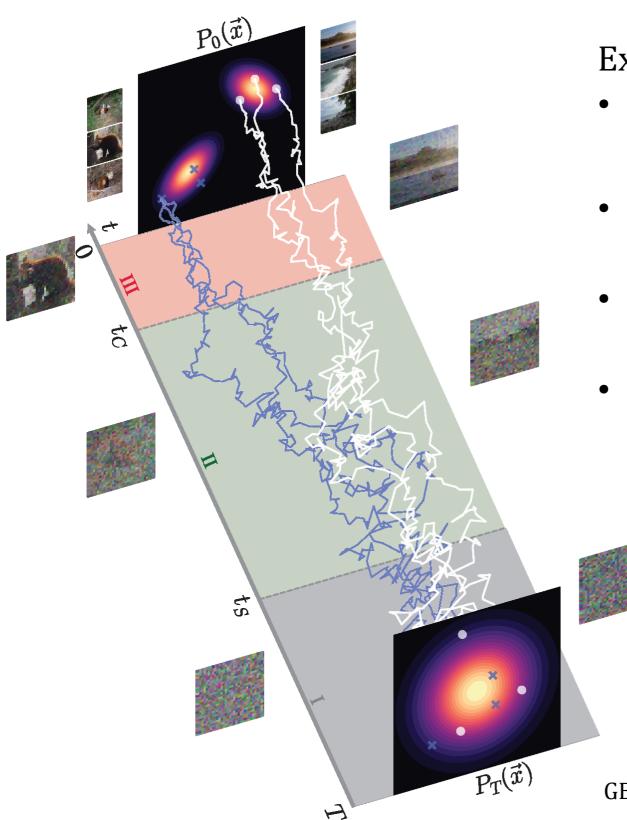
Forward process: equilibration in a quadratic well

$$\frac{dx_{i}}{dt} = -x_{i} + \eta_{i}(t) \qquad x_{i}(t) = x_{i}(0)e^{-t} + \int_{0}^{t} e^{-(t-t')}\eta_{i}(t')dt'$$

$$T = 1 \qquad E = \sum_{i} \frac{x_{i}^{2}}{2} \qquad x_{i}(t) \stackrel{d}{=} x_{i}(0)e^{-t} + \sqrt{1 - e^{-2t}}g_{t}^{i} \qquad g_{t}^{i} \sim \mathcal{N}(0, 1)$$

$$P(x, t) \to P_{GB}(x) = \prod_{i=1}^{d} \frac{e^{-x_{i}^{2}/2}}{\sqrt{2\pi}}$$

Formation on main classes/features of the data from pure noise



Extensions of the theory

- GMs on low dimensional manifolds and latent spaces (Achilli et al. 2025, George et al 2025)
- StatMech Models: Curie-Weiss and 1D Ising (GB and Mezard 2023, Achilli to appear; Guth and Bruna to appear)
- Hierarchical Models (Sclocchi et 2024, Pavasovic et al 2025)
- General large-t expansion: $t_S = \frac{1}{2} \log \Lambda$ (GB et al 2024)

 Λ Largest principal component of the correlation matrix of the data

GB, Bonnaire, De Bortoli, Mézard Nature Commun. 2024

Model

Similar model of Ho et al 2020 U-Net, 4 resolution maps with 2 convolutional blocks Dropout rate 0.1 25.7 millions parameters

Tests in Real Images

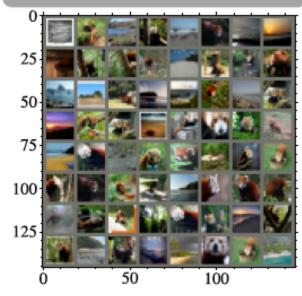
Training

Adam optimizer $LR \ 10^{-4}$ Multiplied by 0.98 every 50 epochs

Imagenet16

500k steps

- 2000 samples
- L. pandas and seashores
- $N = 16 \times 16 \times 3 = 768$

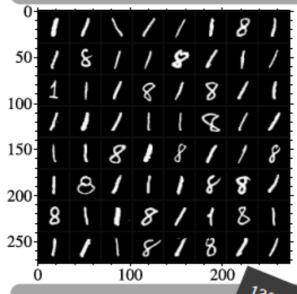


MNIST32

- 100k steps
- Classes 1 and 8

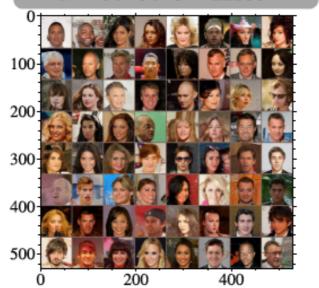
10000 samples

 $N = 32 \times 32 \times 1 = 1024$



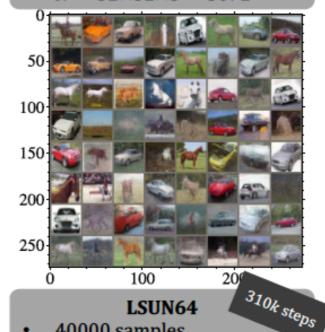
CelebA64

- 130k steps
- 40000 samples Classes males and females
- $N = 64 \times 64 \times 3 = 12288$



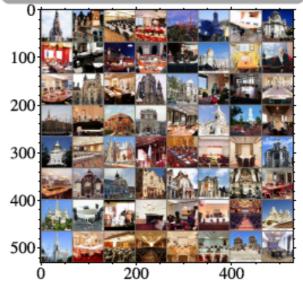
CIFAR2

- 6000 samples
- Classes horses and cars
- $N = 32 \times 32 \times 3 = 3072$



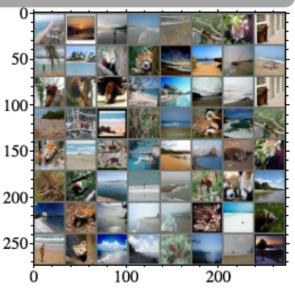
LSUN64

- 40000 samples
- Conference and churches
- $N = 64 \times 64 \times 3 = 12288$



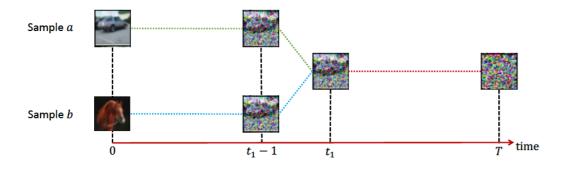
Imagenet32

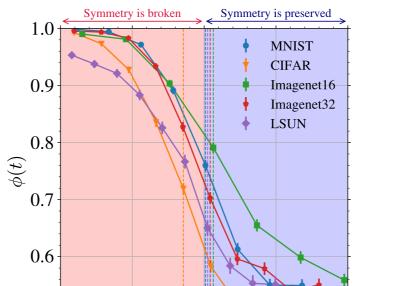
- 2000 samples
- L. pandas and seashores
- $N = 32 \times 32 \times 3 = 3072$



Speciation Transition in Real Images

Cloning experiment



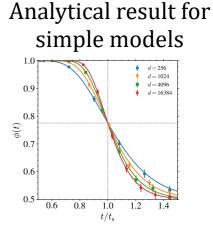


 $t/t_{\rm S}$

 $t_S = \frac{1}{2} \log \Lambda$

Numerical experiments

Probability 2 clones in the same class



Confirm the speciation phenomenon & good estimation of the speciation time

0.5 | 0.0

Observed numerically in U-turns experiments

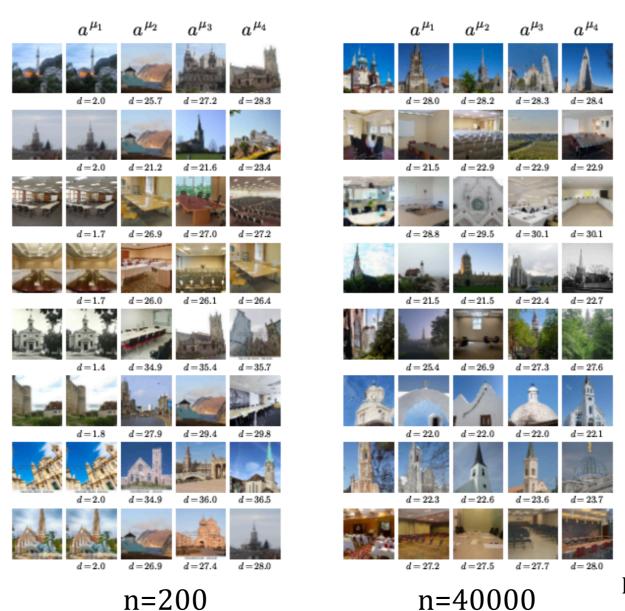
0.5

Behjoo et al 2023 Kadkhodale et al 2023 Schlocchi et al 2024 Why Diffusion Models Don't Memorize?

Memorization-Generalization Transition

Memorisation vs Generalisation

Relevant for theory and practice (copyright problems and differential privacy)



Bonnaire, et al Nat. Comm. 2024

See also Kadkhodale, Guth, Simoncelli, Mallat 2023: experiment with two models on two training sets

Generalisation for large enough training sets (generation of new images and independence on the training set)

Memorisation vs Generalisation

N=10

N = 100

N=1000

N=10000

N=100000

Closest image from S_1 :

Generated by models trained on S_1 :

Generated by models trained on S_2 :

Closest image from S_2 :

Closest image from S_2 :

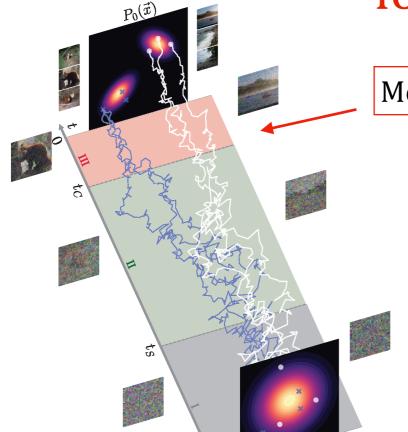
N=1

Kadkhodale, Guth, Simoncelli, Mallat 2023

Generalisation for large enough training sets (generation of new images and independence on the training set)

Memorization vs Generalization

for a "perfect machine"



Memorization

$$\mathcal{L}_{emp} = \frac{1}{n} \sum_{\nu=1}^{n} \mathbb{E}_{noise} \left(S^{\theta_t}(x_{\nu}) + \frac{x_{\nu} - a_{\nu}e^{-t}}{1 - e^{-2t}} \right)^2$$

Global minimum:
$$S^{emp}(x,t) = \nabla \log \left(\frac{1}{n} \sum_{\nu=1}^{n} \frac{e^{-\frac{(x-x^{\nu}e^{-t})^2}{2\Delta_t}}}{(2\pi\Delta_t)^{d/2}} \right)$$

Curse of dimensionality

(Exponential number of data to decrease the memorization phase)

$$n = e^{\alpha d} \; ; \; t_C = f(\alpha)$$

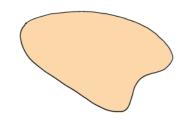
$$n = e^{\alpha d} \; ; \; t_C = f(\alpha)$$
 $t_C \to 0 \quad \text{for } \alpha \to \infty$

(Mapping to disordered systems)

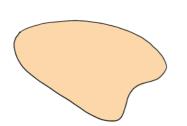
A perfect and perfectly trained machine would lead to memorization

Regime II

$$P_{t_1}(\vec{x})$$



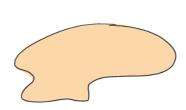
$$P_{t_1}^{true}(\vec{x})$$



Regime III



$$P_{t_2}(\vec{x}) = \frac{1}{n} \sum_{\nu=1}^{n} \frac{e^{-\frac{(x-x^{\nu}e^{-t})^2}{2\Delta_t}}}{(2\pi\Gamma_t)^{d/2}}$$



$$P_{t_2}^{true}(\vec{x}) = \int P_0(x^{\nu}) \frac{e^{-\frac{(x-x^{\nu}e^{-t})^2}{2\Delta_t}}}{(2\pi\Gamma_t)^{d/2}} dx^{\nu}$$

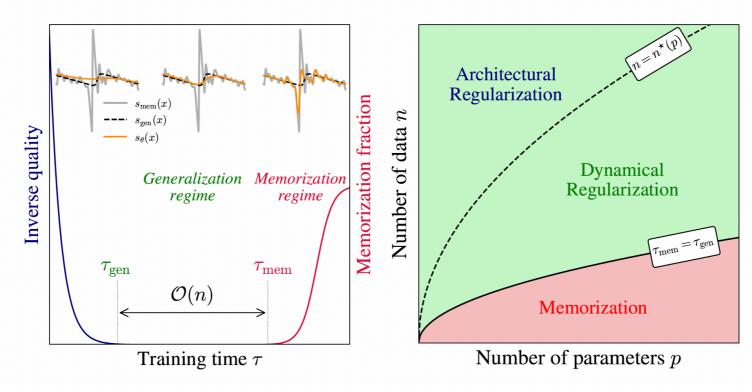
Bonnaire, et al Nat. Comm. 2024

How Diffusion Models Avoid Memorization in Practice?

- Generalisation due to architectural regularization
 - Kamb, Ganguli 2024; Kadkhodale et al. 2023 -> convolutional architecture
 - George, Veiga, Macris 2025: "Denoising Score Matching with Random Features: Insights on Diffusion Models from Precise Learning Curves" -> Analytical study on Random Feature Score Models
- Generalisation due to dynamical regularisation
 - Wu, Marion, Biau, Boyer 2025: "Taking a big step: Large learning rates in denoising score matching prevent memorization." > learning rate
 - Li,Li, Zhang, Bian 2025: "On the generalisation properties of diffusion models" -> early stopping

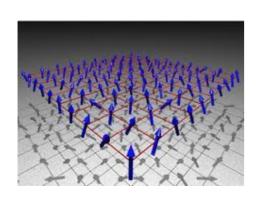
Implicit dynamical regularisation

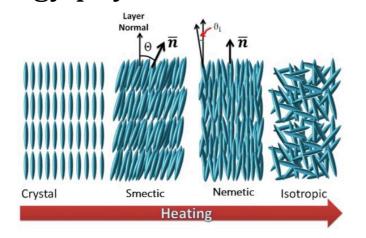
Bonnaire, Urfin, GB, Mézard 2025 See also Favero, Schlocchi, Wyart 2025

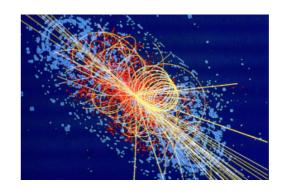


A Recap (or Crash Course) in Renormalization Group

One of the most important conceptual framework in physics -> theory of phase transitions, high-energy physics, multi scale phenomena







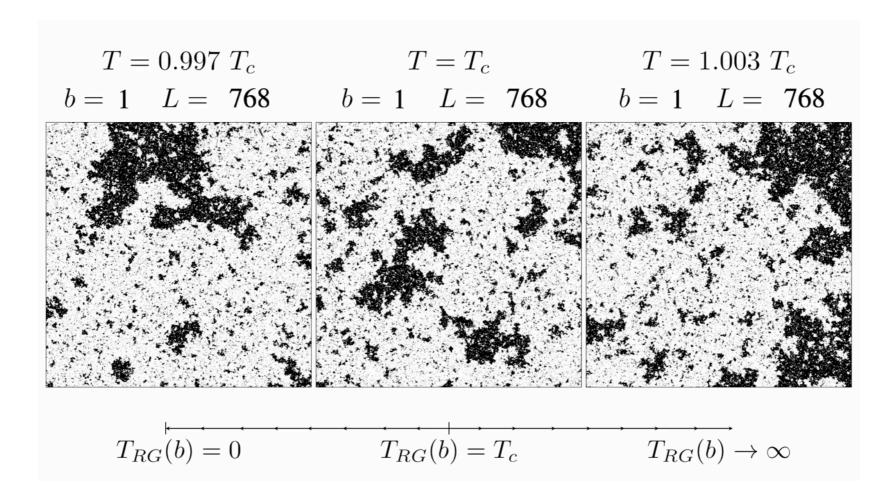
Kenneth Wilson 1982 Nobel Prize in Physics

- RG: Hierarchical coarse grain of the probability distribution from small to large scale. From small scale properties to large scale physics.
- After more than 50 years of works on RG, it turns out that there is a new dynamical formulation of RG and that is strongly connected to diffusion models!

Bauerschmidt, Bodineau, Dagallier 2023 (and before); Clothler, Rezchikov 2023; Masuki, Ashida 2025

Renormalisation group in a nutshell

RG for the Ising Model



• Integrate out the "fast" (or local) degrees of freedom and rescale

$$\ell_{j-1} = 2^{j-1} \to \ell_j = 2^j \qquad \{\varphi_{j-1}(i)\} \to (\{\varphi_j(i)\}, \{\psi_j(i)\})$$

$$P_j(\varphi_j) = \int d\psi_j P_{j-1}(\varphi_{j-1}) \qquad \text{Coarse-grained field Small scale fluctuations "Fast degrees of freedom"}$$

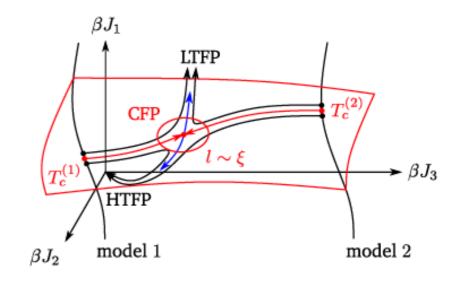
$$P_j(\varphi_j) = \frac{1}{Z_j} e^{-\mathcal{S}_j(\varphi_j)} \qquad \mathcal{S}_{j-1}(\varphi_{j-1}) \to \mathcal{S}_j(\varphi_j)$$

Renormalisation group in a nutshell

- Integrate out the "fast" (or local) degrees of freedom and rescale
- RG leads to a flow in energy functions (or probability distributions)
- Second order phase transition associated to non-trivial fixed points

Crucial ingredient
RG always works on short-scale (or"fast")
degrees of freedom scale by scale

$$\{\varphi_{j-1}(i)\} \to (\{\varphi_j(i)\}, \{\psi_j(i)\})$$



The probability distribution is singular (phase transition + multiscale)
Perturbation theory fails but approximating the RG flow is fine

 $P_{j}(\varphi_{j}) = \int d\psi_{j} P_{j-1}(\varphi_{j-1}) \qquad \qquad \rightarrow \text{No singular behaviour (divergencies), no instability.}$ $\mathcal{H}_{i-1}(\varphi_{j-1}) \xrightarrow{} \mathcal{H}_{j}(\varphi_{j})$

Renormalisation group in a nutshell

- Obtaining the RG flow is a crucial for many physical systems -> major problem in physics
- Many methods to implement RG approximatively (Kadanoff real-space, Wilson-Fisher Fourier space, Operator expansions,...)
- Exact and non-perturbative RG by Polchinsky (and later Wetterich)